182 research outputs found

    A multistage design procedure for planning and implementing public charging infrastructures for electric vehicles

    Get PDF
    Presented in this paper is a Multistage Design Procedure (MSDP) for planning and implementing Public Charging Infrastructures (PCIs) to satisfy intracity charging demand of Electric Vehicles (EVs). The proposed MSDP splits planning and design processes into multiple stages, from macroscale to fine-scale levels. Consequently, the preliminary results achieved at each stage can be refined at the subsequent stages, leading to determine the accurate number and precise geographical location of each charging point. The main advantage of the proposed approach is that it splits a very complicated procedure into multiple and simpler stages, at each of which appropriate goals, targets and constraints can be included. As a result, the iterative interactions among all the stakeholders involved in the PCI design process are significantly simplified. The proposed MSDP has been employed in the planning and design of the PCI of the Italian island of Sardinia, accordingly to all the public bodies

    Metal-Free Modified Boron Nitride for Enhanced CO2 Capture

    Get PDF
    Porous boron nitride is a new class of solid adsorbent with applications in CO2 capture. In order to further enhance the adsorption capacities of materials, new strategies such as porosity tuning, element doping and surface modification have been taken into account. In this work, metal-free modification of porous boron nitride (BN) has been prepared by a structure directing agent via simple heat treatment under N2 flow. We have demonstrated that textural properties of BN play a pivotal role in CO2 adsorption behavior. Therefore, addition of a triblock copolymer surfactant (P123) has been adopted to improve the pore ordering and textural properties of porous BN and its influence on the morphological and structural properties of pristine BN has been characterized. The obtained BN-P123 exhibits a high surface area of 476 m2/g, a large pore volume of 0.83 cm3/g with an abundance of micropores. More importantly, after modification with P123 copolymer, the capacity of pure CO2 on porous BN has improved by about 34.5% compared to pristine BN (2.69 mmol/g for BN-P123 vs. 2.00 mmol/g for pristine BN under ambient condition). The unique characteristics of boron nitride opens up new routes for designing porous BN, which could be employed for optimizing CO2 adsorption

    Green power grids: How energy from renewable sources affects networks and markets

    Get PDF
    The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players' behavior. Our model is data-driven; it builds on one-dayahead real market transactions in order to train agents' behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data

    Optimal positioning of storage systems in microgrids based on complex networks centrality measures

    Get PDF
    We propose a criterion based on complex networks centrality metrics to identify the optimal position of Energy Storage Systems in power networks. To this aim we study the relation between centrality metrics and voltage fluctuations in power grids in presence of high penetration of renewable energy sources and storage systems. For testing purposes we consider two prototypical IEEE networks and we compute the correlation between node centrality (namely Eigenvector, Closeness, Pagerank, Betweenness) and voltage fluctuations in presence of intermittent renewable energy generators and intermittent loads measured from domestic users. We show that the topological characteristics of the power networks are able to identify the optimal positioning of active and reactive power compensators (such as energy storage systems) used to reduce voltage fluctuations according to the common quality of service standards. Results show that, among the different metrics, eigenvector centrality shows a statistically significant exponential correlation with the reduction of voltage fluctuations. This finding confirms the technical know-how for which storage systems are heuristically positioned far from supply reactive nodes. This also represents an advantage both in terms of computational time, and in terms of planning of wide resilient networks, where a careful positioning of storage systems is needed, especially in a scenario of interconnected microgrids where intermittent distributed energy sources (such as wind or solar) are fully deployed

    A Complex Network Approach for the Estimation of the Energy Demand of Electric Mobility

    Get PDF
    We study how renewable energy impacts regional infrastructures considering the full deployment of electric mobility at that scale. We use the Sardinia Island in Italy as a paradigmatic case study of a semi-closed system both by energy and mobility point of view. Human mobility patterns are estimated by means of census data listing the mobility dynamics of about 700,000 vehicles, the energy demand is estimated by modeling the charging behavior of electric vehicle owners. Here we show that current renewable energy production of Sardinia is able to sustain the commuter mobility even in the theoretical case of a full switch from internal combustion vehicles to electric ones. Centrality measures from network theory on the reconstructed network of commuter trips allows to identify the most important areas (hubs) involved in regional mobility. The analysis of the expected energy flows reveals long-range effects on infrastructures outside metropolitan areas and points out that the most relevant unbalances are caused by spatial segregation between production and consumption areas. Finally, results suggest the adoption of planning actions supporting the installation of renewable energy plants in areas mostly involved by the commuting mobility, avoiding spatial segregation between consumption and generation areas

    Islanding the power grid on the transmission level: less connections for more security

    Get PDF
    Islanding is known as a management procedure of the power system that is implemented at the distribution level to preserve sensible loads from outages and to guarantee the continuity in electricity supply, when a high amount of distributed generation occurs. In this paper we study islanding on the level of the transmission grid and shall show that it is a suitable measure to enhance energy security and grid resilience. We consider the German and Italian transmission grids. We remove links either randomly to mimic random failure events, or according to a topological characteristic, their so-called betweenness centrality, to mimic an intentional attack and test whether the resulting fragments are self-sustainable. We test this option via the tool of optimized DC power flow equations. When transmission lines are removed according to their betweenness centrality, the resulting islands have a higher chance of being dynamically self-sustainable than for a random removal. Less connections may even increase the grid’s stability. These facts should be taken into account in the design of future power grids

    Islanding the power grid on the transmission level: Less connections for more security

    Get PDF
    Islanding is known as a management procedure of the power system that is implemented at the distribution level to preserve sensible loads from outages and to guarantee the continuity in electricity supply, when a high amount of distributed generation occurs. In this paper we study islanding on the level of the transmission grid and shall show that it is a suitable measure to enhance energy security and grid resilience. We consider the German and Italian transmission grids. We remove links either randomly to mimic random failure events, or according to a topological characteristic, their so-called betweenness centrality, to mimic an intentional attack and test whether the resulting fragments are self-sustainable. We test this option via the tool of optimized DC power flow equations. When transmission lines are removed according to their betweenness centrality, the resulting islands have a higher chance of being dynamically self-sustainable than for a random removal. Less connections may even increase the grid's stability. These facts should be taken into account in the design of future power grids

    SUSCEPTIBILITY OF Listeria monocytogenes STRAINS ISOLATED FROM FOOD TO ANTIMICROBIAL AGENTS

    Get PDF
    The objective of this study was to evaluate the susceptibility of 40 L. monocytogenes strains isolated from seafood and processing environments to 19 antibiotics currently used in veterinary and human therapy. Susceptibility tests were performed by the automated system VITEK2. Apart from Penicillin, Ampicillin and Trimethoprim-Sulfamethoxazole, for which clinical breakpoint for Listeria susceptibility testing are defined according to the Clinical and Laboratory Standard Institute (CLSI), in the present study the CLSI criteria for staphylococci were applied. This study shows that isolated L. monocytogenes strains are susceptible to the antibiotics commonly used in veterinary and human listeriosis treatment. Very few strains (7,5%) showed a resistance behaviour towards Oxacillin, whereas a variable pattern was showed for Ciprofloxacin and Moxifloxacin. Moreover, an increase in tetracycline resistance, reported by several authors, can not be confirmed in this study, probably due to the different sources of strains isolation. At last, the VITEK2 system represents a rapid and easy-to-use means for antimicrobial susceptibility test of Listeria monocytogenes. In conclusion, because of the increase of antimicrobial resistance showed by L. monocytogenes, a continuous surveillance of emerging antimicrobial resistance among this pathogen is important to ensure effective treatment of human listeriosis. These data can be used for improve background data on antibiotic resistance of strains isolated from food and food environment, even considering the lack of clinical breakpoint provided by the CLSI

    Ex-LDH-based catalysts for CO2 conversion to methanol and dimethyl ether

    Get PDF
    CO2-derived methanol and dimethyl ether can play a very important role as fuels, energy carriers, and bulk chemicals. Methanol production from CO2 and renewable hydrogen is considered to be one of the most promising pathways to alleviate global warming. In turn, methanol could be subsequently dehydrated into DME; alternatively, one-step CO2 conversion to DME can be obtained by hydrogenation on bifunctional catalysts. In this light, four oxide catalysts with the same Cu and Zn content (Cu/Zn molar ratio = 2) were synthesized by calcining the corresponding CuZnAl LDH systems modified with Zr and/or Ce. The fresh ex-LDH catalysts were characterized in terms of composition, texture, structure, surface acidity and basicity, and reducibility. Structural and acid– base properties were also studied on H2-treated samples, on which specific metal surface area and dispersion of metallic Cu were determined as well. After in situ H2 treatment, the ex-LDH systems were tested as catalysts for the hydrogenation of CO2 to methanol at 250 °C and 3.0 MPa. In the same experimental conditions, CO2 conversion into dimethyl ether was studied on bifunctional catalysts obtained by physically mixing the ex-LDH hydrogenation catalysts with acid ferrierite or ZSM-5 zeolites. For both processes, the effect of the Al/Zr/Ce ratio on the products distribution was investigated
    • …
    corecore